### PEM Fuel Cell System Manufacturing Cost Analysis for Automotive Applications



### Yong Yang President

November 8, 2017

Austin Power Engineering LLC 1 Cameron St Wellesley, MA 02482 USA

yang.yong@austinpowereng.com

© 2017 Austin Power Engineering LLC

### Have been working on various EV/FCEV powertrain manufacturing cost analysis since 2002.

**Battery Packs** 

- Lithium ion battery
- Lithium metal solid electrolyte battery
- **NiMH** battery

**Electric Powertrains** 

- Full battery powertrain
- Hybrid battery powertrain
- Fuel cell powertrain



Engineering

Conduct a bottom-up manufacturing cost analysis of a 160 kW class 4 truck fuel cell power system\* as well as a 80kW mid-size light-duty vehicle fuel cell power system.



\*Class4 Truck: 14001–16000lbs (Carb weight + max. cargo weight) "Fuel cell electric truck (FCET) component sizing", ANL, 2016

AustinPower

Engineering

the analysis

the analysis

### This approach has been used successfully for estimating the cost of various technologies for commercial clients and the DOE.











Combining performance and cost model will easily generate cost results, even when varying the design inputs.



We assume class4 truck has an annual production volume of 5,000 units and the mid-size light duty vehicle has an annual production volume of 500,000 units.

| System Components                     | Class4 Truck                                                                           | Mid-size Light Duty<br>Vehicle                                                      |
|---------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Vehicle production volume (unit/year) | 5,000                                                                                  | 500,000                                                                             |
| Stack source                          | Assume two 80 kW<br>stacks at the annual<br>system production<br>volume of 5,000 units | 80kWnet at the annual<br>production volume of<br>500,000 units                      |
| Battery source                        | 1.6 kWh NiMH battery<br>pack at the annual<br>production volume of<br>500,000 units    | 1.6 kWh NiMH battery<br>pack at the annual<br>production volume of<br>500,000 units |
| H2 storage system production volume   | 10 kg x 2 cryo-<br>compressed H2 tanks at<br>5,000/yr                                  | 10 kg cryo-<br>compressed H2 tank at<br>500,000/yr                                  |

\* In 2015, the class 4 truck sales is about 14,000 in US.



# The 80 kW<sub>net</sub> direct hydrogen PEM fuel cell system configuration is referenced in previous and current studies conducted by Argon National Laboratory (ANL).



80 kW<sub>net</sub> Fuel Cell System Schematic<sup>1</sup>

AustinPower

Engineering



#### **Key Parameters**

#### Stack

- 3M NSTFC MEA
- 25  $\mu m$  supported membrane
- 0.125 mg/cm<sup>2</sup> Pt
- Power density: 1,095mW/cm<sup>2</sup>
- Metal bipolar plates
- Non-woven carbon fiber GDL

#### Air Management

- Honeywell type compressor /expender
- Air-cooled motor / Air-foil bearing

#### Water Management

- Cathode planar membrane humidifier with pre-cooler
- No anode humidifier

#### **Thermal Management**

• Micro-channel HX

#### **Fuel Management**

Parallel ejectors

2017 YY

Based on ANL's stack performance analysis, we make the following system and material assumptions for the cost estimation.

| Stack Components                      | Unit               | Class 4 Truck          | Light Duty Vehicle     |
|---------------------------------------|--------------------|------------------------|------------------------|
| Production volume                     | systems/year       | 5,000                  | 500,000                |
| Stacks' net power                     | kW                 | 80 x 2                 | 80                     |
| Stacks' gross power                   | kW                 | 88 x 2                 | 88                     |
| Cell power density                    | mW/cm <sup>2</sup> | 1,095                  | 1,095                  |
| Peak stack temp.                      | Degree C           | 100                    | 100                    |
| Peak stack pressure                   | Bar                | 2.5                    | 2.5                    |
| Cell Voltage                          | Volt               | 0.67                   | 0.67                   |
| System Voltage (rated power)          | Volt               | 300                    | 300                    |
| Platinum price                        | \$/tr.oz.          | \$2,000                | \$2,000                |
| Pt loading                            | mg/cm <sup>2</sup> | 0.125                  | 0.125                  |
| Membrane type                         |                    | Reinforced 3M PFSA     | Reinforced 3M PFSA     |
| Membrane thickness                    | micro meter        | 25                     | 25                     |
| CDL lavor                             |                    | None-woven carbon      | None-woven carbon      |
| GDL layer                             |                    | paper                  | paper                  |
| GDL thickness                         | micro meter        | 185                    | 185                    |
| MPL layer thickness                   | micro meter        | 40                     | 40                     |
| Pipelar plate type                    |                    | SS316L with Treadstone | SS316L with Treadstone |
|                                       |                    | Coating                | Coating                |
| Bipolar plate base material Thickness | micro meter        | 100                    | 100                    |
| Seal material                         |                    | Viton®                 | Viton®                 |



**AustinPower** 

Engineering

We use Pt price at \$2,000/troz which is the similar to highest Pt price in the history.



## The class 4 truck fuel cell stack costs approximately \$43/kW and the mid-size light duty vehicle fuel cell stack costs about \$22/kW.

| Stack<br>Component<br>s     | Class4<br>Truck Stack<br>Cost (\$/kW)³ | Mid-size<br>Light Duty<br>Vehicle<br>Stack Cost<br>(\$/kW) | Comments                                                                       |
|-----------------------------|----------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------|
| Membrane                    | \$6.87                                 | \$0.86                                                     | PFSA ionomer<br>(\$75/kg)                                                      |
| Electrode                   | \$16.35                                | \$9.74                                                     | Pt (\$2,000/troz)                                                              |
| GDL                         | \$6.21                                 | \$1.15                                                     | No-Woven carbon<br>paper                                                       |
| Bipolar Plate               | \$7.19                                 | \$5.98                                                     | Treadstone Coating<br>metallic plates                                          |
| Seal                        | \$2.08                                 | \$1.94                                                     | Viton                                                                          |
| BOS                         | \$1.13                                 | \$0.53                                                     | Manifold, end plates,<br>current collectors,<br>insulators, tie bolts,<br>etc. |
| Final Assembly <sup>1</sup> | \$2.06                                 | \$1.35                                                     | Robotic assembly                                                               |
| Stack<br>Conditioning       | 0.66                                   | 0.60                                                       | 2 Hours                                                                        |
| Total stack <sup>2</sup>    | \$42.54                                | \$22.15                                                    |                                                                                |



2. Results may not appear to calculate due to rounding of the component cost results. 3. Actual stack production volume: 10,000 stacks/yr.



#### Mid-size Light Duty Vehicle Stack Cost (\$22/kWnet)



# The class 4 truck fuel cell system costs approximately \$89/kW and the mid-size light duty vehicle fuel cell system costs about \$52/kW.

| System<br>Components         | Class4<br>Truck<br>System<br>Cost<br>(\$/kW) | Mid-size<br>Light Duty<br>Vehicle<br>System<br>Cost (\$/kW) | Comments                                               |
|------------------------------|----------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|
| Stack                        | \$42.6                                       | \$22.2                                                      |                                                        |
| Water<br>management          | \$2.4                                        | \$1.6                                                       | Cathode side<br>humidifier, etc.                       |
| Thermal management           | \$8.8                                        | \$5.0                                                       | HX, coolant<br>pump, etc.                              |
| Air<br>management            | \$17.9                                       | \$10.1                                                      | CEM, etc.                                              |
| Fuel<br>management           | \$8.9                                        | \$4.8                                                       | H2 pump, etc.                                          |
| Balance of system            | \$3.9                                        | \$3.9                                                       | Sensors,<br>controls, wire<br>harness, piping,<br>etc. |
| System<br>assembly           | \$4.0                                        | \$3.9                                                       |                                                        |
| Total system <sup>1, 2</sup> | \$88.6                                       | \$51.5                                                      |                                                        |

1. Assumed 15% markup to the automotive OEM for BOP components

**AustinPower** 

Engineering

2. Results may not appear to calculate due to rounding of the component cost results.



Mid-size Light Duty Vehicle System Cost (\$52/kW<sub>net</sub>)



The cryo-compressed hydrogen tank design is referenced in studies TIAX conducted on hydrogen storage<sup>1</sup>.



Cryo-Compressed Hydrogen Storage System Schematic<sup>1, 2</sup>

- 1. S. Lasher and Y. Yang, "Cryo-compressed and Liquid Hydrogen System Cost Assessments", DOE Merit Review, 2008
- 2. R.K. Ahluwalia, i.e. "Cryo-compressed hydrogen storage: performance and cost review" Februrary, 2011

AustinPower

Engineering

### The single tank design had a usable hydrogen storage capacity of 10.1 kg.



Assumptions for the hydrogen storage tank design are based on the literature review and third-party discussions.

| Stack Components                              | Unit         | Class4 Truck | Mid-size Light<br>Duty Vehicle |
|-----------------------------------------------|--------------|--------------|--------------------------------|
| Production volume                             | systems/year | 5,000        | 500,000                        |
| Usable hydrogen                               | Kg           | 20.2         | 10.1                           |
| Total H2 in the tank                          | Kg           | 21.4         | 10.7                           |
| Tank type                                     |              | =            | III                            |
| Tank max pressure                             | PSI          | 5,000        | 5,000                          |
| # of tanks                                    | Per System   | 2            | 1                              |
| Safety factor                                 |              | 2.25         | 2.25                           |
| Tank length/diameter ratio                    |              | 3:1          | 3:1                            |
| Liner material                                |              | AI           | AI                             |
| Liner thickness                               | mm           | 3            | 3                              |
| Carbon fiber type                             |              | Toray T700S  | Toray T700S                    |
| Carbon fiber cost                             | \$/lbs       | 12           | 12                             |
| Carbon fiber vs. resin ratio                  |              | 0.68:0.32    | 0.68:0.32                      |
| Carbon fiber translational<br>Strength factor |              | 81.5%        | 81.5%                          |
| Carbon fiber composite layer<br>thickness     | mm           | 12           | 12                             |
| Vacuum gap                                    | mm           | 40           | 40                             |
| # of MLVI layer                               |              | 40           | 40                             |
| Outer layer                                   |              | SS304        | SS304                          |
| Outer layer thickness                         | mm           | 3            | 3                              |

**AustinPower** 

Engineering

A vertically integrated manufacturing process is assumed for the tank and BOP components.



In the cryo-compressed hydrogen storage system, the carbon fiber composite layer, cryogenic valves, system control valves are the top three cost drivers.

| System Components                      | Class4 Truck<br>System Cost<br>(\$/kWh) | Mid-size<br>Light Duty<br>Vehicle<br>System Cost<br>(\$/kWh) |
|----------------------------------------|-----------------------------------------|--------------------------------------------------------------|
| H2                                     | 0.10                                    | 0.10                                                         |
| Al liner                               | 0.78                                    | 0.42                                                         |
| CF layer                               | 2.94                                    | 2.86                                                         |
| Insulation                             | 0.55                                    | 0.37                                                         |
| Vacuum shell                           | 1.59                                    | 0.53                                                         |
| Balance of vessel                      | 0.24                                    | 0.24                                                         |
| Fuel receptacle                        | 1.30                                    | 1.27                                                         |
| Cryogenic valves                       | 1.26                                    | 1.23                                                         |
| HX                                     | 0.24                                    | 0.24                                                         |
| Electronic control                     | 2.54                                    | 2.52                                                         |
| Vent & release device                  | 1.08                                    | 1.05                                                         |
| Tank frame, piping& fitting, fasteners | 0.18                                    | 0.18                                                         |
| Assembly & testing                     | 1.22                                    | 1.10                                                         |
| Total:                                 | 14.02                                   | 12.11                                                        |

**AustinPower** 

Engineering



#### Mid-size Light Duty Vehicle H2 Storage System Cost (\$12/kWh)



We use a 1.6 kWh NiMH hybrid battery pack in both systems, which is current widely used in various Toyota hybrid vehicles, such as Camry hybrid, etc.



Battery Pack

| - |   |   |   |   |   | - |
|---|---|---|---|---|---|---|
|   | • | ۰ |   | • | • |   |
| ) |   |   | V |   |   | 5 |

**Battery Module** 

http://afvsafetytraining.com/erg/Toyota-Camry-HV-2007-11.pdf http://www.peve.jp/en/product/np2/index.html

| Specifications                             |                       |
|--------------------------------------------|-----------------------|
| Battery pack voltage                       | 245 V                 |
| Battery pack dimension                     | 190 x 850 x 495<br>mm |
| Battery pack weight                        | 52 kg                 |
| Battery pack energy                        | 1.6 kWh               |
| Number of NiMH battery modules in the pack | 34                    |
| NiMH battery module nominal voltage        | 7.2 V                 |
| NiMH battery module nominal capacity       | 6.5 Ah                |
| NiMH battery module Output                 | 1,350 W               |
| Anode active material                      | AB <sub>5</sub>       |
| Cathode active material                    | Ni(OH) <sub>2</sub>   |



The hybrid NiMH battery pack costs \$611/kWh. Battery modules, battery management system, and sensors have higher cost contributions.

| Cost Category            | Pack Cost (\$/kWh) |
|--------------------------|--------------------|
| 6 5 Ab modules           | \$3/17             |
| Modulo stack (w/o)       | ψ3+7               |
| module                   | \$6                |
| Battery management       |                    |
| system                   | \$91               |
| Sensors, fuses, switches | \$70               |
| Thermal management       |                    |
| system                   | \$28               |
| Enclosure                | \$32               |
| Misc.                    | \$19               |
| Assembly and Testing     | \$17               |
| Total (\$/kWh)           | \$611              |



## The 1.6 kWh lithium-ion battery system cost \$978 per pack at the mass production volume (500,000 packs/year).

### Conclusion

PEM fuel cell system, onboard hydrogen storage, and hybrid battery cost approximately \$24,593 and \$9,174 for class 4 FC truck and mid-size light duty FC vehicle, respectively.

| Cost Category       | Class4 FC Truck             | Mid-size Light Duty FC<br>Vehicle |  |
|---------------------|-----------------------------|-----------------------------------|--|
| Fuel Cell System    | \$14,176                    | \$4,120                           |  |
| H2 Storage system   | \$9,439                     | \$4,077                           |  |
| Hybrid Battery Pack | \$978                       | \$978                             |  |
| Total:              | \$24,593                    | \$9,174                           |  |
| Comments            | Production volume: 5,000/yr | Production volume: 500,000/yr     |  |

- Class 4 truck production volume: 5,000/yr; 160kW FC; 20.2 kg H2 storage; 1.6 kWh battery pack
- Mid-size light duty vehicle production volume: 500,000/yr; 80kW FC; 10.1 kg H2 storage; 1.6 kWh battery pack



The sale prices for class 4 FC truck and mid-size light duty FC vehicle are \$55,718 and \$26,593, respectively.

| Compor                    | nent Category                           | Class 4 FC<br>Truck<br>(\$/unit) | Mid-size<br>Light Duty<br>Vehicle<br>(\$/unit) | Comments                                                      |
|---------------------------|-----------------------------------------|----------------------------------|------------------------------------------------|---------------------------------------------------------------|
| Glider                    | Glider                                  | \$10,000                         | \$7,000                                        | Class 4 truck and mid-size passenger vehicle                  |
|                           | PEMFC                                   | \$14,176                         | \$4,120                                        | Bottom-up costing                                             |
|                           | H2 storage                              | \$9,439                          | \$4,077                                        | Bottom-up costing                                             |
|                           | Power Chain Traction motor <sup>1</sup> | \$978                            | \$978                                          | Bottom-up costing                                             |
| Power Chain               |                                         | \$2,100                          | \$1,200                                        | Motor + controller + transmission                             |
|                           | Power electric <sup>1</sup>             |                                  | \$840                                          | Main inverter, auxiliary inverter, etc                        |
| Power chain sub-<br>total |                                         | \$28,163                         | \$11,214                                       |                                                               |
| Total vehicle             | manufacturing cost                      | \$38,163                         | \$18,214                                       |                                                               |
| N                         | larkup <sup>2</sup>                     | 46%                              | 46%                                            | Corporation cost & profit, dealer cost,<br>shipping cost, tax |
| Purchase p                | rice for consumer                       | \$55,718                         | \$26,593                                       |                                                               |

1. The DOE advanced power electronics & electric motors (APEEM) team reported the power electronics cost \$7/kW and the motor cost \$10/kW in 2012.

2. Automobile Industry Retail Price Equivalent and Indirect Cost Multipliers, EPA, 2009

## **Thank You!**

**Contact: Yong Yang** 

**Austin Power Engineering LLC** 

1 Cameron St, Wellesley, MA 02482

+1 781-239-9988 +1 978-263-0397 yang.yong@austinpowereng.com www.austinpowereng.com

